
ABSTRACT: The present paper is concerned with the application of the Dual Boundary 
Element Method in dynamics for the determination of the strain in plates subject 
an external impact load. The use of the Laplace Transform in the boundary element 
method allows us to determine with precision the values of the strain inside the 
structure under study for each frequency selected. This precisely strain determination, 
together with the formulation of the couple piezoelectric effect for the sensor used, 
possibly the proposal of a new methodology of health monitoring of structures 
dynamically loaded.
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1. INTRODUCTION

Thin plate structures are widely used in analysing engineering structures (Wen at all, 2000). 
The dynamic analysis is sometimes more precisely than the static one and for some cases 
must be employed rather than the static analysis. The applications of boundary element 
method to the dynamic analysis for plate bending problem were presented by Bezin (1991). 
A comprehensive description of recent advances in BEM in plate bending can be found in 
Ref. (Aliabadi, 1998).

The application of the dynamic equations to isolate beams together with the DBEM 
in the Laplace Domain allow us to evaluate the behaviour of stiffened structure when they 
are subjected a dynamic loads. This paper intends to show the use of the Dual Boundary 
Element Method with dynamic loads in stiffened plates for the determination of cracks 
inside the plate.

First it will be derived the equations to the lateral and longitudinal vibration of an 
isolated beam under an external harmonic load, which will be used to predict the deformation 
inside the piezoelectric sensors used to determine the presence of cracks. Then with the use 
of some compatibility consideration it will be developed the equations of motions of the 
internal points of the plate with the presence of these sensors.

2. DUAL BOUNDARY ELEMENT METHOD USING 
LAPLACE TRANSFORM FOR DYNAMIC ANALYSIS

The general field equation for elastodynamics, may be written as (Domingues, 1993):

(1)

where c1=(λ+2μ/ρ)1/2 is the P-wave velocity; c2=(μ/ρ)1/2 is the S-wave velocity; λ and μ are 
the Lame constants; ρ is the density; and ρb is the body force vector and u is the displacement 
vector.

For 2 D dynamic problems the fundamental solutions are:

(2)

(3)
The value for the functions Ψ and χ for the 2D analysis are given in the appendix.
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The Dual Boundary Element Method (DBEM), as presented by Portela et al. (Portela 
et al, 1992), is capable of analysing configurations involving any number of edges and 
embedded cracks in any given geometry. The need for dividing the problem in different 
regions, common to many boundary element formulations, is avoided by using the 
displacement equation when collocating at one crack surface and the dual traction equation 
when collocating at the other crack surface (Salgado et al., 1996). The use of Laplace Transform 
enables us to have a simpler way to analyse the problem and to achieve reasonable answers 
for dynamic analysis.

The boundary integral displacement equation, for a source point x’ at the boundary Γ 
of a finite sheet is give by:

(4)

where Tij(x’,x) and Uij(x’,x) are the Kelvin traction and displacement fundamental 
solutions, respectively, uj(x) and tj(x) are the displacements and tractions at boundary 
field points x, bj(X) are body forces acting at field points X inside the domain Ω and cij is a 
coefficient that can be determined by rigid body movement considerations.

The corresponding traction boundary integral equation, presented below, can be 
obtained by differentiation of equation (4), application of the Hooke’s law and multiplication 
by the outward normal,

(5)

where Sijk(x’,x) and Dijk(x’,x) contain derivatives of Tij(x’,x) and Uij(x’,x), respectively 
and ni(x’) denotes the i-th component of the unit outward normal to the boundary at the 
source point x’. The plate is considered to be thin, so that the interactions forces exchanged 
with the stiffeners can be treated as action-reaction body forces. The plate displacement and 
traction equations can be derived by considering equations (4) and (5) which assume the 
presence of body forces. If, instead of being distributed over the whole domain, the body 
forces are confined to straight lines inside it, the domain integrals in equations (4) and (5) 
reduce to line integrals over the body forces loci. The displacement and traction equations 
for a thin plate with N stiffeners continuously bonded to it can thus be written as:
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(6)

and

(7)

where ΓSn stands for the stiffeners loci, bk
Sn represents the unknown sensor attachment 

forces and h is the plate thickness.

3. DISPLACEMENT COMPATIBILITY

The displacement compatibility conditions for points at the stiffeners attachment region are 

based on the assumption that the displacement uj of a point X’ (X´∈ ( )SnX Γ∈' sn) at the plate and uj
Sn of 

a corresponding point at the n-th stiffener, has to be compatible with the shear deformation 
of the adhesive layer connecting the sensor to the plate. They are expressed, with respect to a 
reference point X0 at the same sensor locus (( )SnX Γ∈0

sn), by N sets of relations as:

(8)

where hAd is the thickness of the adhesive layer, GAd is the coefficient of shear 
deformation of the adhesive material, τj

Ad is the shear stress at the adhesive, Δuj(X’) = 
uj(X’)-uj(X0), Δuj

Sn(X’) = uj
Sn(X’)-uj

Sn(X0), Δτj
Ad(X’) = τj

Ad (X’)-τj
Ad (X0). For the line stiffeners, 

the adhesive shear stress τj
Ad are equal in value to the attachment forces bj

Sn divided by the 
width of the adhesive line wAd. The displacement compatibility equation can be written in 
terms of the body forces as:

(9)

where Δbj
Sn(X’) = bj

Sn (X’)- bj
Sn (X0) and

(10)
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is the coefficient of shear deformation of the adhesive.
If the reference point X0 is taken to coincide with the sensor starting point (y=0), the 

relative displacement Δuj
Sn in equation (9) can be expressed as a function of the unknown 

interaction forces bj
Sn, which will be determined for the sensors applied in the structure and 

will be shown in the next section. The relationship between the relative displacements and 
forces expressed in terms of the plate and the sensors coordinate systems is given by:

(11)

and

(12)

The transformation matrix being:

(13)

where φSn is the angle between the plate direction x2 and the n-th sensor axis. 
The plate relative displacement Δuj(X’) = uj(X’)-uj(X0) in equation (9) can be then finally 

written as:

(14)

The problem can be totally solved by making use of the Equilibrium equations over 
each stiffener.

For the stiffeners to be in equilibrium, the following equations have to be satisfied:

(15)

(16)

(17)
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4. SENSORS EQUATIONS

The figure 1(a) shows a plate with some sensors. For low values of the deformations we can 
consider the problem in 2 dimensions, that means not considering the effects of the out of 
plane displacements. Also the loads are only applied in the direction x or y given thus the 
possibility of the 2D analysis for the problem. The considering forces in plate and the forces 
and momentums in the stiffeners are showed in figure 1(b).

Figure 1 - (a) Plate with two sensors; (b) Forces e Momentums applied over the structure and sensors.

For the lateral direction (over the axe 1 in the figure) the differential equation of motion 
takes the form:

(18)

If the load is harmonic

( ) ( ) typtyp ωsin, =
 

(19)

where  ( ) ( ) ( ) ( )yfLFFyp 111 0 +−= (20)

Substituting eqs. (2) and (3) in eq. (1) and doing some simple rearrangement we get the 
following equation (Kolousek, 1973).
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(21)

The general response, considering p(x) = 0 for the equation above is the following:

l
yDl

yCl
yBl

yAyu λλλλ sinhcoshsincos)( +++= (22)

with

(23)

It must be consider also the particular solution for the equation (18), when it is 
considered the value of p(y).

The integration constants are computed from the boundary conditions. In this case we 
consider an arbitrary rotation and displacement at the beginning and end of the beam. For 
our case we can use the following relations (Meriam and Kraige,1992):

(24)

and

(25)

and from eq. (22) considering that the answer inside the stiffener has a linear variation, 
then the second and third derivatives are:






 ++−−= l

yDl
yCl

yBl
yA

l
yu λλλλλ sinhcoshsincos)( 2

2
,, (26)

and






 ++−= l

yDl
yCl

yBl
yA

l
yu λλλλλ coshsinhcossin)( 3

3
,,, (27)

So using the conditions for the beginning and the end of the stiffener y = 0 and y = L 
respectively we have:
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(28)

(29)

(30)

(31)

For the longitudinal direction the differential equation takes the form.

( ) ( ) ( ) 0,,,
2

2

2

2

=−
∂

∂
−

∂
∂ typ

t
tyv

x
tyvSE ρ (32)

If the load is harmonic

( ) ( ) typtyp ωsin, =  (33)

where  ( ) ( ) ( ) ( )yfLFFyp 222 0 +−=  (34)

Substituting eqs. (33) and (34) in eq. (32) and doing some simple rearrangement we get 
the following equation (Kolousek, 1973).

(35)

The general response for the equation above is the following

l
yHl

yGxv ψψ sincos)( += (36)
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with

(37)

The same procedure must be taken to determine the particular solution of the equation 
(12). The integration constants are also computed from the boundary conditions. For the 
case here we have the following relation:

(38)

and from eq. (19) the first derivative is:






 +−= l

yFl
yE

l
yv ψψψ cossin)(, (39)

So using the conditions for the beginning and the end of the stiffener y = 0 and y = L 
respectively we have:

(40)

(41)

5. PIEZOELECTRIC EFFECT

According to the IEEE compact matrix notation [7], the coupled electromechanical 
constitutive equations of a linear piezoelectric material are written as

direct piezoelectric effect:               σε dED T +=              (42)
converse piezoelectric effect:   Eds E '+= σε               (43)
where D (charge/area) and E (voltage/length) are the electric displacement and 

electric field respectively. ε and σ are the mechanical strain and stress, d, εT and sE are the 
piezoelectric strain constant, dielectric permittivity and compliance constant, respectively. 
The superscripts E and T indicate that the values of the constant are obtained at a constant 
electrical field and constant stress respectively.
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For the sensor model, according to [8] and assuming that the sensor is sufficiently small 
to consider the strain constant inside the sensor area, the output voltage can be written as

( )p

Rpp
out K

hEd
V

υπε
ε
−

=
14 03

31 (44)

where d31 is the piezoelectric charge coefficient equal to 130 x 10-12 m V-1, Ep is the young 
modulus equal to 76 x 109, hp is the thickness, K3 is the relative dielectric constant equal to 
1280, and ε0 is the dielectric permittivity of a free space equal to 8.85 x 10-12 for PKI-402 
piezoelectric sensor. 

6. NUMERICAL EXAMPLES

In order to have some values of comparison, it will be shown similar examples as the 
executed in the reference [9 and 10]. There the uses of Lamb waves have shown that the 
crack can be detected, although some problems with blind zones are also addressed. Here 
the dynamic evaluation of the strain field in a plate will show another way of analysing the 
problem of crack detection.

Figure 2 – Aluminium plate with 2 sensors.
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The figure 2 shows the plate aluminium plate whose properties are given in table 1 
and the configuration of the mesh used in the DBEM code, with 24 quadratics elements 
and 48 nodes.

Table 1 – Geometrical and material properties of aluminium plate.

Dimensions (mm3) 600 x 600 x 2

Young’s modulus, E (GPa) 72.5

Shear modulus, G (GPa) 27.25

Mass density, ρ (kg m-3) 2700

Poisson Coefficient, υ 0.33

The table 2 shows the properties from the PZT sensors.

Table 2 – Geometrical and material properties of PZT – ceramic (PKI-402)

Dimensions (mm3) 8 x 8 x 0.5
Young’s modulus, Ep (GPa) 76
Shear modulus, Gp (GPa) 29
Mass density, ρp (kg m-3) 7600
Poisson Coefficient, υp 0.31

Relative dielectric constant K3 1280
Piezoelectric charge coefficient d31, (m V-1) 130 x 10-12

Thickness, h (cm) 0.05
Dielectric permittivity of a free space, ε0 (F m-1) 8.85 x 10-12 F m-1

The Figure 3 shows the results to the output voltage normalized by the value V0 which 
is the value for the same pristine state for plate in the static analysis.

Signal on the sensors
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1.5

2

2.5

3

0 50 100 150 200 250

Frequency [Hz]

Vo
lts

 / 
V 0

 

Pristine Sensor 1
Pristine Sensor 2

Figure 3 – Output for the pristine state of the plate.
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7. DETERMINATION OF A CRACK IN A SQUARE ALUMINIUM PLATE

In all numerical example here presented it was adopted a coefficient of shear deformation 
from the adhesive from 0,085. Different values to this parameter can also be utilized if a 
comparison of the effect of such parameter was necessary. The Mesh of DBEM utilized was 
with 28 quadratic elements and 56 nodes for all cases in this first example.

It was used a straight crack from 4 mm which can be easily detected using the 
measurement of the dynamic strain field and the signal in the sensor increases with the 
proximity from the crack. The figure 4 shows two different positions for the crack. It can 
be seen in the figure 5 the increased signal detected in the sensors when there is a crack 
inside the plate. The curves for the first crack are equal for the both sensor because of the 
symmetry of the problem. But we can note that the signal increase for the first sensor when 
we approach the crack of it, and also can be noted that the signal decrease for the second 
sensor because the crack is becoming more distant of it.

Figure 4 – Configuration of the problem with straight crack in the plate.
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Signal on the sensors
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Straight Crack d1 = d2 - Sensor 2

Straight Crack d1 = 0.5 d2 - Sensor 1

Straight Crack d1 = 0.5 d2 - Sensor 2

Figure 5 – Output from the sensors with straight cracks.

The figure 6 shows the problem for the case of a slant crack. The angle of inclination of 
the crack is for the case 45 degrees.

Figure 6 – Configuration of the problem with slant crack in the plate.

The graphic on the figure 7 shows the values from output for the slant crack. The 
behaviour is the same that for the straight crack, the only difference now is in the values of 
the output, in this case they are lower when compared with the straight crack because of the 
lower values of the deformations in the plate.
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Signal on the sensors
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Figure 7 – Output from the sensors with slant cracks.

The last example is just for comparison between the values of the slant crack with the 
straight crack. Both cracks are positioned in the centre of the plate. The results can be seen 
in the figure 8.
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Figure 8 – Output from the sensors for straight and slant central crack.

8. CONCLUSIONS

The precisely computation of the dynamic strain field inside plates allowed by Dual Boundary 
Element Method using Laplace Transform permit us to propose a new methodology of 
health monitoring using the computation of dynamic strain fields. It was noted that the 
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strain field can show with great precision the behaviour of the cracks inside plates. This 
methodology could be used without the normally necessary neural networks used to do the 
heath monitoring of the plates.
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