
ABSTRACT: In this paper is presented the use of Dual Boundary Element Method (DBEM) 
in the Laplace transform domain to analyse the dynamic response of stiffened plates 
of 2 D problems. The formulation is derived by coupling dynamic boundary element 
two-dimensional plane stress or strain dynamic elasticity formulation of a stiffened 
plate and the displacement equations for an isolated beam under dynamic load. The 
interaction forces between stiffeners and the plate are treated as line distributed body 
forces along the attachment.
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1. INTRODUCTION

Thin plate structures are widely used in analysing engineering structures (Wen at all, 2000). 
The dynamic analysis is sometimes more precisely than the static one and for some cases 
must be employed rather than the static analysis. The applications of boundary element 
method to the dynamic analysis for plate bending problem were presented by Bezin (1991). 
A comprehensive description of recent advances in BEM in plate bending can be found in 
Ref. (Aliabadi, 1998).

The application of the dynamic equations to isolate beams together with the DBEM in 
the Laplace Domain allow us to evaluate the behaviour of stiffened structure when they are 
subjected a dynamic loads. This paper intends to show the first results of the use of the Dual 
Boundary Element Method with dynamic loads in stiffened plates.

First it will be derived the equations to the lateral and longitudinal vibration of an 
isolated beam under an external harmonic load. Then with the use of some compatibility 
consideration it will be developed the equations of motions of the internal points of the plate 
with the presence of the stiffener.

Mathematical Equations for the Vibrating isolated Beam
Considering a stiffener plate as shown in figure 1(a) reinforced with stiffeners in the 

both side of the plate. This type of construction allows us to consider the problem in 2 
dimensions because of the symmetric construction which minimize the effects of the out of 
plane displacements. Also the loads are only in the direction x or y given thus only the 2D 
analysis of the problem, the considering forces in plate and the forces and momentums in 
the stiffeners are showed in figure 1(b). 

Figure 1 – (a) Stiffened plate; (b) Forces and Momentums applied over the stiffener.
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For the lateral direction (over the axe 1 in the figure) the differential equation of motion 
takes the form:

       (1)

If the load is harmonic

( ) ( ) typtyp ωsin, =          (2)

where      ( ) ( ) ( ) ( )yfLFFyp 111 0 +−=    (3)

Substituting eqs. (2) and (3) in eq. (1) and doing some simple rearrangement we get the 
following equation (Kolousek, 1973).

        (4)

The general response, considering p(x) = 0 for the equation above is the following:

l
yDl

yCl
yBl

yAyu λλλλ sinhcoshsincos)( +++=      (5)

with 

                    (6)

It must be consider also the particular solution for the equation (1), when it is considered 
the value of p(y).

The integration constants are computed from the boundary conditions. In this case we 
consider an arbitrary rotation and displacement at the beginning and end of the beam. For 
our case we can use the following relations (Meriam and Kraige,1992):

         (7)

and

         (8)

and from eq. (5) considering that the answer inside the stiffener has a linear variation, 
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then the second and third derivatives are:
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So using the conditions for the beginning and the end of the stiffener y = 0 and y = L 
respectively we have:

            (11)

            (12)

 
                                  

 
    (13)

For the longitudinal direction the differential equation takes the form.

        (15)

If the load is harmonic

( ) ( ) typtyp ωsin, =          (16)

where      ( ) ( ) ( ) ( )yfLFFyp 222 0 +−=    (17)

Substituting eqs. (13) and (14) in eq. (12) and doing some simple rearrangement we get 
the following equation (Kolousek, 1973).

        (18)

(14)
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The general response for the equation above is the following

l
yHl

yGxv ψψ sincos)( +=        (19)

with 

          (20)

The same procedure must be taken to determine the particular solution of the equation 
(12). The integration constants are also computed from the boundary conditions. For the 
case here we have the following relation:

          (21)

and from eq. (19) the first derivative is:






 +−= l

yFl
yE

l
yv ψψψ cossin)(,       (22)

So using the conditions for the beginning and the end of the stiffener y = 0 and y = L 
respectively we have:

        (23)

            (24)

2. DUAL BOUNDARY ELEMENT METHOD

The general field equation for elastodynamics, may be written as (Domingues, 1993):

        (25)

where c1=(λ+2μ/ρ)1/2 is the P-wave velocity; c2=(μ/ρ)1/2 is the S-wave velocity; λ and 
μ are the Lame constants; ρ is the density; and ρb is the body force vector and u is the 
displacement vector.

For 2 D dynamic problems the fundamental solutions are:
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            (26)

            (27)

The value for the functions Ψ and χ for the 2D analysis are given in the appendix.
The Dual Boundary Element Method (DBEM), as presented by Portela et al. (Portela 

et al, 1992), is capable of analysing configurations involving any number of edges and 
embedded cracks in any given geometry. The need for dividing the problem in different 
regions, common to many boundary element formulations, is avoided by using the 
displacement equation when collocating at one crack surface and the dual traction equation 
when collocating at the other crack surface (Salgado et al., 1996). The use of Laplace Transform 
enables us to have a simpler way to analyse the problem and to achieve reasonable answers 
for dynamic analysis.

The boundary integral displacement equation, for a source point x’ at the boundary Γ 
of a finite sheet is give by:

            (28)

where Tij(x’,x) and Uij(x’,x) are the Kelvin traction and displacement fundamental solutions, 
respectively, uj(x) and tj(x) are the displacements and tractions at boundary field points x, 
bj(X) are body forces acting at field points X inside the domain Ω and cij is a coefficient that 
can be determined by rigid body movement considerations.

The corresponding traction boundary integral equation, presented below, can be 
obtained by differentiation of equation (28), application of the Hooke’s law and multiplication 
by the outward normal,

            (29)

where Sijk(x’,x) and Dijk(x’,x) contain derivatives of Tij(x’,x) and Uij(x’,x), respectively and 
ni(x’) denotes the i-th component of the unit outward normal to the boundary at the source 
point x’. The plate is considered to be thin, so that the interactions forces exchanged with the 
stiffeners can be treated as action-reaction body forces. The plate displacement and traction 
equations can be derived by considering equations (28) and (29) which assume the presence 
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of body forces. If, instead of being distributed over the whole domain, the body forces are 
confined to straight lines inside it, the domain integrals in equations (28) and (29) reduce to 
line integrals over the body forces loci. The displacement and traction equations for a thin 
plate with N stiffeners continuously bonded to it can thus be written as:

            (30)

and

            (31)

where ΓSn stands for the stiffeners loci, bkSn represents the unknown sensor attachment 
forces and h is the plate thickness.

3. DISPLACEMENT COMPATIBILITY

The displacement compatibility conditions for points at the stiffeners attachment region 
are based on the assumption that the displacement uj of a point X’  at the plate 
and uj

Sn of a corresponding point at the n-th stiffener, has to be compatible with the shear 
deformation of the adhesive layer connecting the sensor to the plate. They are expressed, 
with respect to a reference point X0 at the same sensor locus , by N sets of relations 
as: 

      (32)

where hAd is the thickness of the adhesive layer, GAd is the coefficient of shear deformation of 
the adhesive material, τj

Ad is the shear stress at the adhesive, Δuj(X’) = uj(X’)-uj(X0), Δuj
Sn(X’) 

= uj
Sn(X’)-uj

Sn(X0), Δτj
Ad(X’) = τj

Ad (X’)-τj
Ad (X0). For the line stiffeners, the adhesive shear stress 

τj
Ad are equal in value to the attachment forces bj

Sn divided by the width of the adhesive line 
wAd. The displacement compatibility equation can be written in terms of the body forces as:

       (33)
where Δbj

Sn(X’) = bj
Sn (X’)- bj

Sn (X0) and 

           
            (34)



16 Revista de Ciências Exatas e Tecnologia

The use of Dual Boundary Element Method in the Dynamic Analysis of Stiffened Plates

is the coefficient of shear deformation of the adhesive.
If the reference point X0 is taken to coincide with the sensor starting point (y=0), the 

relative displacement Δuj
Sn in equation (30) can be expressed as a function of the unknown 

interaction forces bj
Sn, by using the expression (5) for the transverse displacement and (19) 

for the longitudinal displacement. The relationship between the relative displacements and 
forces expressed in terms of the plate and the sensors coordinate systems is given by:

          (35)

and

          (36)

The transformation matrix being:

        (37)

where φSn is the angle between the plate direction x2 and the n-th sensor axis. 
The plate relative displacement Δuj(X’) = uj(X’)-uj(X0) in equation (30) can be then 

finally written as:

            

            (38)
The problem can be totally solved by making use of the Equilibrium equations over 

each stiffener.
For the stiffeners to be in equilibrium, the following equations have to be satisfied:

            (39)
            (40)
            (41)
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4. NUMERICAL EXAMPLES 

PLATE WITH ONE STIFFENER

The first numerical example is a plate with one stiffener, using plane stress conditions to solve 
the problem in 2D. The different positions of the stiffener inside the plate can be seen in the 
figure 2. Also the boundary conditions are showed in figure 2. For this example were used 12 
boundaries elements, the material applied in the plate was steel, also for the stiffeners. The 
dimensions of the plate are width = 20 m, high = 40 m. Each stiffener has area = 5 m2. The load 
applied on the upper part of the plate has unitary amplitude. For maintaining simplicity the 
concentrate loads and momentums at the ends of each stiffener are here considered zero. The 
graph of figure 3 shows the result for the three different sets of stiffeners positions. The two 
curves are the comparison between the static code (Salgado et al., 1996) with the dynamic one 
when in this last one we took the frequency very low (ω = 0.001).

Figure 2 – Mesh and boundaries conditions applied for the plate with one stiffener.

The agreements of the curves are satisfactory considering that was used a very little 
value to the frequency to get to the static value of the displacement. The y axis of the graph 
was normalized using the v0 displacement equals to the displacement of the central node of 
the upper part of the plate without the use of stiffener (equals to 0.4574 mm). The x axis was 
normalized with the distance d = 20.0 m and x varies from 0 to 20.
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Figure 3 – Displacement values along top edge of the one stiffened plate using static and dynamic codes.

5. PLATE WITH TWO STIFFENERS

The second numerical example is a plate with two stiffeners. The different positions of the 
stiffener inside the plate can be seen in the figure 4. Also the boundary conditions are showed 
in figure 4. For this example were used 12 boundaries elements, the material applied in the 
plate was steel, also for the stiffeners. The dimensions of the plate are width = 20 m, high = 40 
m. Each stiffener has area = 5 m2. The load applied on the upper part of the plate has unitary 
amplitude. The graph of figure 5 shows the result for the three different sets of stiffeners 
positions. The two curves are the comparison between the static code (Salgado et al., 1996) 
with the dynamic one when in this last one we took the frequency very low (ω = 0.001).
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Figure 4 – Mesh and boundaries conditions applied for the plate with two stiffeners.

The agreements of the curves are satisfactory considering that was used a very little 
value to the frequency to get to the static value of the displacement. The y axis of the graph 
was normalized using the v0 displacement equals to the displacement of the central node of 
the upper part of the plate without the use of stiffener (equals to 0.4574 mm). The x axis was 
normalized with the distance d = 20.0 m and x varies from 0 to 20.

0.9979

0.998

0.9981

0.9982

0.9983

0.9984

0.9985

0.9986

0.9987

0.9988

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x / d

v 
/ v

 0

Static -Case A
dynamic ω= (0.001 , 0.)
Static - Case B
dynamic ω= (0.001 , 0.)
Static - Case C
dynamic ω= (0.001 , 0.)

Figure 5 – Displacement values along top edge of the two stiffened plate using static and dynamic codes.
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6. PLATE WITH THREE STIFFENERS

The third example is a plate with three stiffeners and the boundaries conditions showed 
in the figure 6. For this example were used 24 boundaries elements, the material applied 
in the plate was steel, also for the stiffeners. The dimensions of the plate are width = 20 m, 
high = 40 m. Each stiffener has area = 5 m2. The load applied on the upper part of the plate 
has unitary amplitude. The graph of figure 7 shows the result for the three different sets of 
stiffeners positions. The first two curves are for the stiffeners positioned like showed in the 
figure 6. The curves obtained with the code used here are compared with other curves from 
static codes (Salgado et al., 1996). The other set of curves are for the stiffeners in different 
position inside the plate. The stiffeners were positioned in the corners of the plate and one 
in the centre and the last set of curves is for the stiffeners agglomerate more in the centre of 
the plate.

The agreements of the curves are satisfactory considering that was used a very little 
value to the frequency to get to the static value of the displacement. The y axis of the graph 
was normalized using the v0 displacement equals to the displacement of the central node of 
the upper part of the plate without the use of stiffener (equals to 0.4574 mm). The x axis was 
normalized with the distance d = 20.0 m and x varies from 0 to 20.

Figure 6 – Mesh and boundaries conditions applied for the plate with three stiffeners.
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Figure 7 – Displacement values along top edge of the three stiffened plate using static and dynamic codes.
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6.1. Stress Intensive Factor (SIF) for the Plate with two Stiffeners – slant crack

In this next numerical example, now we compute the values of the Stress Intensity Factors 
(SIF) KI and KII normalized by the value of K0, which is the value for the SIF for the same static 
problem. The configuration of the plate is showed in figure 8 and the results are showed in 
figure 9. Here the plate has the following dimensions: 3 m width and 6 m high. The crack 
is slant and the values of the SIFs are computed for a different relation d/2a and compared 
with the values of the SIF for the plate without stiffeners. The figure 9 shows the results for 
this problem.

Figure 8 – Plate used for the SIFs (KI and KII) calculations.
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Figure 9 – Values of the Normalized SIF for different values of d/2a.

6.2. Stress Intensive Factor (SIF) for the Plate with two Stiffeners – straight crack

In this last numerical example, now we compute the values of the Stress Intensity Factors 
(SIF) KI for the plate showed in figure 10. The crack is straight and the values of the SIF are 
computed for a different relation d/2a and compared with the values of the SIF for the plate 
without stiffeners. The figure 11 shows the results for this problem.
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Figure 10 – Plate used for the SIF (KI) calculations.
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Figure 11 – Values of the Normalized SIF for different values of d/2a.
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7. CONCLUSIONS

The use of the code in dynamic for the plate with the stiffeners could represent some 
advantage in the analysis of the stress intensity factors because the real problems in the 
majority of the structures are really occurring during the use and over dynamics loads. The 
improvement of such codes can improve the analysis of critical structures and allow more 
confidence in the analysis.
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